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NUMERICAL SCHEMES FOR CONSERVATION 
LAWS VIA HAMILTON-JACOBI EQUATIONS 

L. CORRIAS, M. FALCONE, AND R. NATALINI 

ABSTRACT. We present some difference approximation schemes which converge 
to the entropy solution of a scalar conservation law having a convex flux. The 
numerical methods described here take their origin from approximation schemes 
for Hamilton-Jacobi-Bellman equations related to optimal control problems and 
exhibit several interesting features: the convergence result still holds for quite 
arbitrary time steps, the main assumption for convergence can be interpreted as 
a discrete analogue of Oleinik's entropy condition, numerical diffusion around 
the shocks is very limited. Some tests are included in order to compare the 
performances of these methods with other classical methods (Godunov, TVD). 

1. INTRODUCTION 

We are interested in the approximation of the entropy weak solutions in the 
sense of Kruzkov [15] of the following scalar conservation law: 

(CL) 5 u+ f(u), = O in R x (0, o), 
lu(x, 0) = uo(x) in R. 

The connections between this problem and the theory of generalized solutions 
(see, e.g., [7, 6, 8, 16]) to the first-order Hamilton-Jacobi equation 

(HJ J Vt +f(vx) =0 in Rx (O, o), 
(HJ) lv(x,O) =vo(x) inmR 

are known. Roughly speaking, if v is a viscosity solution of (HJ), then u :=vx 
is an entropy solution of (CL) (for the precise results see ?2). This relation 
has been used also for numerical purposes in order to derive schemes for (HJ) 
from the large collection of methods for (CL). In fact, it has been shown that 
integrating a scheme converging to the entropy solution of (CL) (called CL- 
scheme in the sequel), one can obtain a scheme converging to the viscosity 
solution of (HJ) (HJ-scheme in the sequel). This technique has been applied 
by. several authors; e.g., Kruzkov in [17] and Crandall and Lions in [9] have 
studied numerical methods derived from first-order schemes for (CL), Osher 
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and Sethian in [25] have obtained schemes for (HJ) starting from ENO schemes 
(see also the recent paper of Lions and Souganidis [22] on the convergence of 
MUSCL schemes). We also use this relation for numerical purposes but in the 
opposite direction. The numerical approximation of (HJ) has the advantage 
that we deal with more regular solutions (typically they are locally Lipschitz 
continuous) and we take a discrete derivative in x on the numerical solution 
of (HJ) to go back to u. Another advantage is that the expressions of the 
schemes for (HJ) are relatively simple in comparison with their analogs for 
(CL) (see ?5). Our main result is the following. Assume we have a numerical 
scheme approximating the (unique) viscosity solution v of (HJ), where the 
Hamiltonian f is a WI convex real function on R and vo E W1I 00 (R) (we will 
comment on the nonconvex case in Remark 5. 1). Let Ax and At be respectively 
the space and time steps and set, for some fixed N E N, T NAt . Let v7n be a 
numerical approximation of v at (jAx, nAt), for j E Z and n E {O, .. ., 
and let us define, for example, 

( 1 . 1 ) U 8 -sv.7+ 
- 7 

We define on R x (0, T) the piecewise constant function uA as follows: 

u (x, t) = u if (X, t) E [(- A)x, (+ 2) Axx) A,(n+IA 

and we do the same for vA. 

Theorem 1.1. Assume that for any t E (0, T), the sequence vA converges in 
L' (R) to the viscosity solution of (HJ) as Ax and At go to zero, and the 
following properties hold: 

(i) there exists a constant C1 such that for any i E Z and for any integer 
n E {O, ..., N} 

(1.2) Ax 

(ii) there exists a constant C2 such that for any j E Z and for any integer 
n E {O, ... ,N} 

( 1.3) v71 - 2v7 + v1 

Then for any t e (0, T) the sequence uA converges in L,, (R) to the entropy 
solution u of (CL). 

Notice that the assumption (i) only implies the weak convergence of uA to u. 
Since assumption (ii) is a discrete equivalent of the celebrated Oleinik's entropy 
condition, this result can be stated saying that from an "entropic" scheme for 
viscosity solutions satisfying a bound on the discrete x-derivatives one can 
obtain, by (1.1), a scheme which converges strongly to the entropy solution of 
(CL). Notice that the forward difference in (1.1) is taken just for simplicity but 
that the result is still valid when using centered or backward differences. For 
initial data with compact support for (CL) the condition (1.2) can be dropped 
since it is implied by (1.3) (see Proposition 4.2). 
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An example of methods satisfying assumptions (i), (ii) is given by a class 
of schemes studied by Falcone and Giorgi [11] (see also [10] and references 
therein). These schemes have been developed for the Hamilton-Jacobi-Bellman 
equation related to a finite horizon optimal control problem but can be adapted 
to (HJ). Since they can be written in the form 

VJ = min{v n l (jAx - aAt) + Atf* (a)}, 
aER 

where f* is the Legendre transform of f, one can interpret them as a discrete 
version of the Lax-Oleinik-Hopf representation formulas (see [19, 23, 14], and 
[21]) for the viscosity solutions of (HJ), see also [24]. An interesting feature 
of these schemes is that they do not work on a fixed number of nodes, since 
the stencil depends on the ratio lt/Ax which may be nonconstant. Choosing a 
large time step will only increase the width of the stencil in such a way that the 
domain of dependence of the conservation law will always be contained in the 
numerical domain of dependence. Naturally, this will require a larger number 
of operations at each time step but, as we will show in the sequel, the global 
CPU time necessary to obtain accurate results is even lower than that needed by 
some classical schemes (see ?6). The HJ-schemes produce accurate approximate 
solutions both for smooth and for discontinuous solutions. We refer to [12] and 
[20] for a study and numerical experiments related to other difference schemes 
with large time step. 

The outline of the paper is as follows. In ?2 we review the relations be- 
tween (CL) and (HJ), establishing some results about the precise correspon- 
dence between entropy solutions and viscosity solutions. In ?3 we consider 
general classes of approximation schemes for both problems and prove the rela- 
tions between them. Section 4 is devoted to the proof of our main convergence 
result, Theorem 1.1. In ?5 we study the schemes derived from optimal control 
problems and prove that they satisfy the assumptions of the general convergence 
theorem. Some remarks on the CFL condition, the local truncation error and 
other properties of HJ-schemes are also included in this section. Finally, ?6 is 
devoted to numerical results for some typical examples. We compare the accu- 
racy of our methods with other more classical schemes (Godunov, TVD) and 
we compute the approximate rate of convergence obtained in our tests. 

2. PRELIMINARIES: RELATION BETWEEN CONSERVATION LAWS 

AND HAMILTON-JACOBI EQUATIONS 

In this section we shall present for completeness some simple results about 
the equivalence of (HJ) and (CL) from an analytical point of view. First we 
quote a preliminary result from [21, Theorem 16.1, p. 268]. 

Proposition 2.1. Let f E C(R) and assume v E WI 1'll(R x (O, T)) to be a 
solution of (HJ). Then u vx is a weak solution of (CL). 

Our first result is the following 

Theorem 2.2. Let f E C1 (R) , vo E W1 ?' (R) . If v E W1 ?' (R x (0, T)) is the 
(unique) viscosity solution of (HJ), then u := vX is the (unique) entropy solution 
of (CL) 
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Proof. As proved in [9], the viscosity solution v is the limit as e -- 0+ in 
L?0(R x (0, T)) of the regular solutions v8 of the following problems: 

21 f ~~~Vt +f(v)=v8, in Rx (0, T), (2.1) { nxOT 
( * ) l ~~v8(x, 0) =vo(x) in R1 . 

Hence, we have for any (p E COOO(R x (O, T)) 
T ~~~~T/ 

lim] | v(p dx dt =-liml' Veoxdxdt 

T T 

=-I lvspxdx d t vx(pdxdt . 

Obviously, the function u8 := VX solves the derived problem 

(2.2) 5 ut + f(u8)x = eUt in R x (O, T), 
*u(X, O) = VOX(X) in R 

and, according to [15], the sequence uW converges in LI(Rx (O, T)) , ase 0, 
to the entropy solution u of (CL). 

Then, for any (o E COOO(R x (0, T)), 
T ~~Tf 

lim] | u^pdxdt = updxdt. 

Consequently, 

IIvx(pdxdt =I u(p dx dt,. 
and vx = u a.e. in R x (O, T). o 

A converse of these results also holds true: 

Proposition 2.3. Let f E C(R) and assume u E Llo (R x (0, T)) to be a weak 
solution of (CL). Let 

for a fixed a E R. Then v E W,',' (R x (0, T)), and v is a solution of (HJ) 
almost everywhere. 
Proof. Since u E LlOO(R x (0, T)), there exists a set A C (0, T), with Lebesgue 
measure m(A) = 0, such that for any t E (0, T)\A, u is defined a.e. on R 
and u(, t) E LlO (R) . Then for such values of t, v(, t) E LlO (R) . Moreover, 
for any t E (0, T)\A and any (p E COOO(R x (0, T)), 

jv(x, t)(px(x, t)dx = j [ju(4, t)d4] (x(x, t)dx 

- -j| u(x, t)(p(x, t)dx . 

Thus, integrating on (0, T), one has u = vx in the sense of distribution and 
almost everywhere. Since u is a weak solution of (CL), we have, for any ( E 
COOO (Rx (0,T))) 

J0TJf(u)qpxdxdt = -jTJ upftdxdt 

= T = +jTjvtXdxdt 
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So there exists vt in the sense of distribution, and vt = -f(u) = -f(v,). 
Therefore, v E jl oo (R x (0, T)), and v is a solution almost everywhere of 
(HJ). o 

For any u E C([O, T]; L1 (R)), we set 

(2.3) v(x, t) :=L u(4, t)d . 
-00 

Therefore, for any t E (0, T), the function v(., t), is absolutely continuous 
and vx = u a.e. 

Theorem 2.4. Let f E C1 (R) and uo E L??(R) n L1 (R). Assume that U E 
Lw(R x (0, T)) n C([O, T]; L1 (R)) is the (unique) entropy solution of (CL); 
then the function v given by (2.3) is the (unique) viscosity solution of (HJ), for 
vo(x) =_ fx. uo(4) d . 

Proof. Since u E C([O, T]; L1 ((R)), we have that v E L??(R x [0, T]) . As in 
the previous proposition, it is easy to show that v E W1 ??D(R x (0, T)) and 
that it is a solution almost everywhere of (HJ). Also, 

x 
liml v(x, t) - vo(X)I < lim | Iu( , t) - uo(Q)j dX = O. 
t--+o- t--+o J 

Now, suppose v is not the viscosity solution of (HJ), and denote by v the 
(unique) actual viscosity solution. So, by Theorem 2.2, vx is the unique entropy 
solution of (CL) and therefore, for any (0 E Co??D(R x (0, T)), 

ll(v -T)epxdxdt = O 

Hence, the conclusion follows from the arbitrariness of (0. 0 

Remark 2.1. It would be interesting to prove this analytical equivalence with- 
out using the known results about existence, uniqueness, and convergence of the 
viscosity approximation. As far as we know, this proof has been obtained by the 
viscosity approximation only in the convex case and in the case of piecewise 
regular solutions (see [8]). More recently, Caselles [4] has proved the equiv- 
alence in a direct way for the stationary problem. It is probably possible to 
extend his methods to deal with the time-dependent problem. 

3. RELATIONS BETWEEN CL-SCHEMES AND HJ-SCHEMES 

Here we consider the numerical aspects of the correspondence between en- 
tropy solutions of a conservation law and viscosity solutions of a Hamilton- 
Jacobi equation. 

To approximate the solution u of (CL), we consider the class of finite dif- 
ference schemes depending on (2p + 1) grid points and written in conservation 
form, i.e., 

(3.1) Un+1 = AJ - fp 
j-,@ i AxLJ JjJ 

Here, Ax and At are the mesh sizes, UJ is the value of the approximation 
of the solution u at the grid node (jAx, nAt), for E Z, n E {O, ..., N} 
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and = f(U_p+1, ...n, up) is the numerical flux, where 7: R2P R is a 
regular function. 

For Ax and At fixed, the approximate solution is given by 

uA(x, t) := Uj for (x, t) E Ij,n5 

where, for e Z, n {0, ... ,NN} 

Ijn =[i-2)x,( + 2) Ax) x [n/t, (n + I)At). 

We assume for simplicity 

(3.2) {U7}jez Ell Vn > 0. 

From (3.1) it is enough to assume (3.2) only for n=0. 
Now we set, for 0< n < N, 

j-i 

(3.3) VJ: UnAX 
I_-oo 

So, we can reverse this relation to obtain 

(3.4) Un = 
+ V 

U1 AX 

and therefore, by using again (3.1), we obtain a finite difference (2p + 1)-point 
conservative scheme which approximates (HJ), namely 

(3.5) v+ = Atf j-P+ -P I... 

The approximate solution for (HJ) is then given by 

vA(x, t) :=v for (x, t) E I,n. 

Theorem 3.1. If for any t E (0, T), the sequence uA(*, t) as Ax and At go 
to zero, converges in L1 (R) to the entropy solution u of (CL), .then, for any 
t E (0, T), the sequence vA(, t) converges in Lw (R) to the viscosity solution 
v of (HJ). 
Proof. For any (x, t) E R x (O, T) let j E Z, n E {0, ...N} be such that 
(x, t) E Ii, n - Since from Theorem 2.4 the function v given by (2.3) is the 
viscosity solution of (HJ), we have 

IVA(X, t)-v(x, t)j = -vj u(Q, t) d 
I 00 

j-i x 

- Z E u7Ax- j u(R,t)d| 

J(j- 1/2)Ax x 

=IJ ~(uA(4 ,t) -u(4 t)) d4-J u(4, t) dxl 
-00 j-1/2)Ax 

Hence, 

IIVA(-, t) -v(, t)IILw(R) < jjuA(, t) -u(, t)I1LI(R) + AXIIUIutL(Rx(o, T)) 

and the theorem is proved. o 
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Remark 3.1. The extension of Theorem 3.1 to the case when (3.2) does not hold 
is straightforward. Notice that the conservation form (3.1) allows the simple 
expression (3.5), but in principle Theorem 3.1 holds true for any finite difference 
scheme. 

4. A GENERAL CONVERGENCE RESULT 

In order to obtain numerical schemes for conservation laws from those for 
Hamilton-Jacobi equations, we need to reverse the arguments of the preceding 
section. 

Let vJ be the approximation of the solution v of (HJ) at the grid point 
(jAx, nAt), given by a general finite difference scheme 

VJl+ = F(vJ_P, .vn 

and define UJ, for example, as in (1.1). As above, uA and vA will denote the 
corresponding approximate solutions. 

We recall that, if the function f is strictly convex and v is the viscosity 
solution of (HJ), there exists a constant K such that, for any t > 0, 

(4.1) VXX < K in _'(DR x (O, T)) 

if the same inequality holds true at t = 0 (see [21, Theorem 16.1, p. 268] for 
a proof). 

Lemma 4.1. Assume v E WI co(R) and suppose there exists a constant K such 
that 

(4.2) VXX < K in 9'(R). 

Then, for any h and any x E R, 

v(x + h) - 2v(x) + v(x -h) 
(4.3) h2 -<K. 

The proof is omitted. 

Proof of Theorem 1.1. It is clearly sufficient to work with the more convenient 
convergence in Lc. Let v be the viscosity solution of (HJ). We set 

(X, t) =_ v((j + I)Ax, nAt) - v(jAx, nAt) for (x, t) EIj,n Ax 

Let I be any fixed bounded interval of R. We have 

jIuA(x, t) - u(x, t)12 dx < 2 j u,(x, t) - uA(X, t)12 dx 

+ 2 Ifiu,(x, t) - u(x , t)i2 d'x 

2(II + I2) . 

First step: the estimate of I,. Let S = {ij, . jm, im} C Z be such that 
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for any ji, E S. Then, if t E [nAt, (n + 1)At), we have 

II = jIUA(X, t) - fi,(X, t)12dx 

v7+1Vn _V v((j + I)Ax, nAt)-v(jAx, nAt) 2 
? I AX AX 
jES 

With the notation w: v7 - v(jAx, nAt), the above inequality becomes 

ZA+W 

2 where A+ is the forward first difference operator. Thus, setting S' = S\{ji }, 
we have 

Ii< (w;+i-WI) Xj Ax 
jES 

X 

= A.+l z 
q Ax+ XWjn - n+W, -AXWjn 

Ajwj_ WIAjw - ; Ax 
jES' 

_?su p IV7-V(IX Ax/At)I [Z ( Ax2I + A|xv(jAx, nAt) ) A 

+ 2(CI + IIvIlwi.o)1, 

where we have used (1.2) and the definition of w7. Now, from (1.3) we deduce, 
for any i e Z and n =1,..., N, 

u7-u C1 < C2AX 

and therefore, setting zi = - C2jAx, we obtain 

zn+ < Zi 

for any j E Z and n = 1, ..., N. Then we have the following inequality: 

A | 7 AxZ=jE |u1-u7 lt<?ZI lzjn - z> +j2ji1)Ax 
jES' jEs' jES' 

= Zni _ Z'M + C2(im1-)AX 

= uq -UI + 2C2(m1-jl)Ax 

< 2 (Cl + C21I) 
A!v(jAx , nAt) IXb sn In a similar way we can estimate the term EjES X2 Ax by using 

Lemma 4. 1. 
Finally, setting 

C3 4(C1 + IIvIIwi,,) + 2(C2 + K)JlIj 

we get 

(4.4) II = / IUA(x, t) - u,(X, t)12 dx < C3 sup lv7 - v(jAx, nAt)l . 
-JI J,n 
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Second step: the estimate of I2 . We continue to use the previous notations. 
Then 

),= IiuA(X, t) - u(x, t)12 d x 

< 2 fI(i+112)AX | v ((j + 1)Ax, nAt) - v (jAx, nAt) 

jES (j-1/2)Ax Ax 

v(x +Ax, t) - v(x, t) 2d 
Ax~~~ 

v(x +Ax, t) - v(x t) 2 

=2(J1 + J2) - 

It is easily seen, from the Rademacher theorem, that 

(4.5) J2 = O(Ax) . 

To estimate the term J1 , we shall follow the first step of the proof. Set 

w(x, t) := v(jAx, nAt) - v(x, t) for (x, t) E Ii, n 

Then 
E f(j+1/2)Ax w(x +Ax, t) w(x, t) 2 

+jES 1/2)x t)A(w(x, t Ax-dx 

( (j+ 1/2)Ax A2W(X 

jES' - (j1/2)Ax Ax 
(jm+3x2)Ax tw(x , t)-w(x -Ax t) 

Since v e W1'o?(R x (0, T)), we have immediately 

+ w(x, t)l d IxVIIwl,oo AX2+At2. 

Therefore, by using again Lemma 4.1, we have the following inequality: 

mx2+1 t2[Z AAV(jAX,nAt)1x 

+ z +Ax,tv-(x , t)d 4 

W Axv(x, tdxd 

? IIVIIwi,o O A WX+At LI IWAX2 td Lies, J(6 1/A) A2V t 
+ x ~ ~~~~ 6 dIIIlo + 42Kv1]W, 
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To conclude the proof, we only have to estimate the sum in the last inequality. 
Define 

A ( ,t)=v (x+Ax, t)-v(x, t) 
UA(x, t) AX 

By Lemma 4.1, we have for any (x, t) E R x (O, T), 

uA(x+Ax, t)-K(x+Ax) < u^A(x, t)-Kx . 

Consequently, we can easily show, using the above arguments, that 

f(IJ+1/2)AX iA(X, t) - uiA(x - Ax, t) 

JES' J(-1/2)Ax dx 
1 Fr /(il+3/2)Ax 

<- (u'A(x - Ax, t) - K(x - Ax)) dx 
Ax U (j1+1/2)Ax 

J(im+1/2)Ax 
-J (zA(x, t) -Kx) dx + KIIl 

(im- 1/2)Ax 

< 2IvIwl, oo + 2KII1 

We conclude that 

(4.6) Ji < C4 IV Iw, w Ax2 +At2 

where 
C4 8 llv IIwl, o + 4KIII . 

The assertion follows from (4.4), (4.5), and (4.6). o 

We remark that the inequality (1.3) is a discrete analogue of the celebrated 
Oleinik entropy condition [23]. 

Remark 4.1. The proof of Theorem 1.1, for simplicity, has been given using a 
forward finite difference representation for vx . The same result (and the same 
proof) holds true for centered or backward differences. 

Remark 4.2. For compact support initial data for (CL), the condition (1.3) 
implies (1.2). In fact, we have the following 

Proposition 4.2. Let {vj} be a real-valued sequence, j e Z, and M, R, ho, K 
some positive constants such that: 

(a) for hjl?> R,for all he(0, ho) and jeZ 

Vj+j = vj; 

(b) for all he (0, ho) and j eZ 

vj+l- 2vj + vj- < K. 
h2- 

Then, for all h E (O, ho), j E , we have 

v|+4 vji < K(2R + ho). 
h 

Proof. Set, for any j E Z, 

wj = vj - 
I 

K(hj)2. 
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Then, by calculation, 

(4.7) wj+1-wj < wj-wj_1, Vj. 

By applying (4.7) iteratively we can determine an upper bound for wj+l - wj 
which is independent from M. In fact, for Ihjl < R, we have 

hWj+l-Wj < IK(2R+ho), 

and therefore 

vj+ - vj <WI+l -W j | *tl-j |< |w+- |+ 1 Kh(2j + 1) < K(2R + ho). o 
h - h 2 

Remark 4.3. Let I be any fixed interval of R, and S = {jl, ...j, Im} C Z be 
such that 

I n[( i-. Ax, (J+2)Ax) 0 

for any ji E S. From (1.1) and (1.3) we have, for any j E Z and n = 
1 N~ 

uj-u 1 < C2AX 

and therefore, setting zi - C2jAx, 

zn + <Z Zj+1 < j 

Consequently, we have the following inequality for the total variation of uq on 
the interval I: 

m m 
TVI(un) < E ju -U_ -II < E |zJ - z5-l i + C2(im - Ii)AX 

i=2 i=2 

=Z31 -ZJq+C2(jm-j1)AX 
= V j -um + 2C2(jm1jl)AX 

< 2 (Cl + C21II) 

Thus, our schemes are locally TVB (i.e., they have bounded total variation). 
Nevertheless, we cannot use Harten's theorem [13] since, in general, they are 
not in conservation form (see also Proposition 5.3 and the Remark 5.1). 

5. CL-SCHEMES DERIVED FROM HJ-SCHEMES 

As we mentioned in the introduction, we can construct schemes satisfying 
the assumptions of the general convergence theorem, starting from the schemes 
which have been studied to obtain an approximation of the value function of a 
finite horizon optimal control problem. 

We briefly describe here the origin of these methods referring to [11] and 
[10] for details. 

Consider a system of controlled ordinary differential equations 
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where a(-) E Y: {<a(-): [0, T] -+ A, measurable} is the control, A is a 
given subset of Rm and y E Rn the state. The cost functional related to the 
finite horizon problem is 

(5.2) ~~J(x, t,a(-)):=t g(y(s) ,s, a(s))e-A(s-0 d s 

+ V(y(T))eA(Tt), 

where A is a positive real parameter. 
The value function is defined as 

w(x, t):= inf J(x, t, a(-)). 

It is well known that, via the Dynamic Programming Principle, one can prove 
that w satisfies the Hamilton-Jacobi-Bellman equation 
(HJB) 
{-t w +Aw + sup{-b(x, t, a) - Vxw - g(x, t, a)} = O inRn x (0, T), 

aEA 

-w (x, T) = Vc(x) in R{n. 

Moreover (see, e.g., [21, ?8.4]), w is the unique viscosity solution of (HJB). 
The scheme for the approximation of the value function w is based on a 

discretization in time (step k := At) of the control problem (5.1), (5.2). A 
Discrete Dynamic Programming Principle leads to a discrete (in time) version 
of (HJB). Adding a grid in the space variable (step h := Ax), one can get an 
approximation scheme ([11]) which, in the one-dimensional case, is 

( w(jh, nk) = min{e-Akw(jh + k b(jh, nk, a), (n + l)k) 

(HJB)k (hJ) i + k, g(jh, nk, a)}, 
w(jh, Nk) = Vl(jh), 

where n =0, ..., N and Nk =T. 
With w7 denoting the approximate solution obtained by applying the above 

scheme, the following estimate holds (see [ 1]): 

(5.3) jw(jh, nk) - wjhl < Clki + C2h + C3- 

We now show how this scheme can be applied to solve (HJ). We start recalling 
that whenever f is a convex function, (HJ) can be written as 

vt + Sup{avx - f*(a)} =O in R x (0, T), 
(5.4) aER 

I(v(x,0)=vo(x) in R, 

where f* denotes the Legendre transform of f, that is, 

(5.5) f*(x) = sup{ax - f(a)} for any X E R. 
aER 

By applying to (5.4) the change of variable 

v(x, t) = w(x, T - t)eAt, 
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we transform the original Cauchy problem for v in the following problem with 
a terminal condition: 

(-Wt + Aw + sup {awx f*(a)e-1(T-t)} =O in Rx(O, T), 
aER 

tw(x,T)=vo(x) in R, 
i.e., we get the (HJB) corresponding to the control problem with b(x, t, a) 
-a and 

g(x, t, a) - f*(a)e-A(T-t) 
In order to have a scheme for (HJ), we do now the same, but in the opposite 
way, for the discrete problem. Then, introducing the change of variable 

w(jh, nk) := v(jh, T- nk)e-(Tnk) 

we transform (HJB h) into the following scheme for the Cauchy problem: 

v(jh, nk) = inf{v(jh + kb(jh., T- nk, a), (n - l)k) 
I ~~~aER 

(5.6) j + k g(jh, T - nk, a)eAnk}, 

v(jh, O)=yV(jh), 
which, in the special case of problem (5.4), corresponds to 

(v7 - inf{vn-i(jh - ka) + kf*(a)}, 
(5.7) 

J 
aER 

vo =v(h 

where v := v(x, nk). To recover. the information on the approximate 
solution of (CL) we just use (1.1) or any other discrete representation of vx 
(see Remark 4.1). 

However, there are two main difficulties for computing the solution by (5.7). 
The first is related to the evaluation of the infimum, since we have to solve an 
extremum problem over an unbounded domain (notice that we are looking for 
the global minimum) and f* may be hard to compute. An algorithm for the 
computation of the Legendre transform has been proposed in [3], and precise 
error estimates (in L?? ) have been established in [5]. 

The second difficulty is related to the observation that (5.7) is not a standard 
finite difference scheme, since in the right term appears v n-(jh - ka), that 
is, v"-I computed on points which in general are not grid points. If this is 
the case,.we replace vn-l(jh - ka) with.the convex combination of v<n- and 
v n-I , where q E Z is such that (jh - ka) E [qh, (q + l)h]. q+1 

Let us look more closely into the problem of computing the minimum in 
(5.7). Notice that, when f E C2(R) is strictly convex, we can find an analytic 
expression for the convex function f* . In fact, under these assumptions, for 
any x e R there will be a unique a such that x = f'(a). Since the supremum 
in (5.5) is achieved for a - (f')1 (x), the Legendre transform can be written 
as 

f*(x) = x(f')"1(x) - f((f') -(x)) 
Another useful property of the Legendre transform is the following: let f be 
such that 

f(v) (5.8) lim +00; 
ve f,+o, Iv 

then f* satisfies (5.8) too, [14]. 
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The following proposition shows that, if (5.8) holds, then the search for the 
supremum can be done over a bounded set. 

Proposition 5.1. Assume that v E W1 '?(R) for any ,t > 0. If f is strictly 
convex and satisfies (5.8), there exists a bounded interval A := [-M, M], 
M > 0, such that 

(5.9) sup{avx - f*(a)} = sup{avx - f*(a)}- 
aER aEA 

Proof. Clearly, to get the result, it suffices to prove that there exists a constant 
K such that the set 

AK:= {a E R: avx - f*(a) > K} 

is bounded and not empty. For any a E AK, we have 

f*(a)+K 

Since (5.8) holds and llv IxI < V, the set AK is bounded for any K. To obtain 
AK # 0, we can choose 

'K = -IiijV - f*(a), 
where a is any fixed value. In particular, (5.9) holds for the set 

A :={a ER: -lalV-7f*(a) > -f*(O)}. 

Notice also that (5.9) holds only if we assume that f is Lipschitz continuous. 
In fact, by definition, in that case, f*(x), = +oo for all x, lxI > Lf . More- 
over, when (5.9) holds, if we let h(x) := argsupaEA{ax - f*(a)}, the argument 
associated with x E [-Ilvoliwioc, llvo0I,wol], then at least formally 

d {ax - f*(a)}a=h(x) 0, 

i.e., 

(5.10) (f*)'(h(x)) = x. 

Since 
f(x) = h(x)x - f*(h(x)), 

differentiating and using (5.10), we obtain 

f'(x) = h(x) + h'(x)x - (f*)'(h(x))h'(x) - h(x) 

and in particular f'(vx) = h(vx). The last implies that A D [-R, R], where 

R = sup If'(x)i. 
XEV-IIvoIIw,o00, lVoIVwl,.oo1 

As an example, consider the case f(v) := 1 V2, which corresponds to the 
Burgers equation. It is straightforward to show that 

f*(v) = v 

and the supremum in (5.9) is achieved in the interval [-IIvoIIww,,, lvolIwicl.- 
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Remark 5.1: Representation formula for a nonconvex flux and approximation. 
Let f be locally Lipschitz continuous and vo be Lipschitz continuous and 
convex; by Lv and Lf we will denote respectively their Lipschitz constants. 
Then the following representation formula for the solution of (HJ) holds (see 
[14, 1]): 
(5.11) v(x, t) = sup inf{vo(z) +y * (x - z) - tf(y)}. 

yER zER 

By the definition of the Legendre transform it is easy to prove that (5.1 1) can 
also be written as 

v(x, t) = (v* + tf)*(x). 

*Under the above assumptions the search for max and min can be restricted to 
two bounded closed intervals ([5]), A C {y : y E B(O, L)} and B = {z: z E 
B(x, Lft)}, so that 

(5.12) v(x, t) = maxmin{vo(z) +y - (x - z) - tf(y)}. 
yEA zEB 

Then we can apply twice the algorithm studied in [3, 5]. We remark that 
the representation formula (5.12) also suggests an approximation scheme which 
can be interpreted in terms of differential games. Let x = jh, t = nk, and 
z = jh - ka; substituting in (5.12), we have 

(5.13) v. = max min {v -I(jh - ka) +yka - kf(y)}. 
yEIaI?Lf 

An algorithm for similar problems related to pursuit-evasion games has been 
studied in [2]. 

Now we want to prove that the HJ-scheme (5.7) satisfies the assumptions of 
the general convergence theorem when (5.9) is true. Let a E [-M, M]; the 
point 

(jh - ka) E [(j + i)h, (j + i + I)h) =:jI 
if and only if 

aE ((i + 1)k, -ih n [-M, ]= , 

where P [k M] + 1 and i E P:{-p,. .., p -1} . Then the scheme can 
be written as 

(5.14) v+' = min{vn+l} 
iEP J 

where 
(f k \( k \ 

(5.15) lvQt:min<I 1++a iVj-i i+-a vn.+ f() (5{5) J,+l =amEAn (1+ i + h )V+ i+ha i+i+l + kf* (a)} 

Theorem 5.2. Assume that vo satisfies (1.2), (1.3), and let (5.9) be true. Then 
the scheme (5.14), (5.15) satisfies assumptions (i) and (ii) of Theorem 1. 1. 
Proof. We first show that -the scheme satisfies (i). 

In fact, let 
vl-vJn+l,fl where ilEP, 
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and 
Vj-vj,- i, where i2 E P. 

We have 

(5.16) vn -vn = vn i,vj,i < vJn+ i--vjn 

Assume a1 and a2 are the points in (-(I2 + 1)h, -i2] hn [-M, M], where 

the minimum in (5.15) is achieved, respectively for v7n. i and v7 12* Then 

(5.16) becomes 

I-0v < (I + i2 + h al) v 11l+2-(12 + h ai) v7 ,2+1 + kf*(a,) 

- (1 +i2+ha2) v;;+ (i2+ a2)+i2+1 kf*(a2) 

? (i + i2 + k a2) (vn-I - v7n1) 

- (i2 + hi a2) (v7n++i2+1 - v12+i ) 

< max{(v+i2+)ia2 -v )2, (v7 j+i2)-v+i)} 

In the same way we get 

v -v> min{(vJ7, -v7.1), (v7 7,-vj )- n I 

and (i) is proved by induction on the initial vector {VQ?}jE. 
We now prove (ii). Set 

v n+ = vn+ i,, where il E P, 

vn = v7 where i2 E P, 

VU1 = V>,3,n where i3 E P. 

Then 
v7~ 2v7 + = V - 2v7,1 +v ,, vJ+ l-Vj Wn - I Vj+1 l i,2J 12 + Jn_1 i3 

< jn+12-2v J 12 +v_1, i2 - 

With a1, a2, and a3 chosen as before, the above inequality becomes 

j- 2v + vJ1 < (I + i2 + h a2) vj+-l+i2(12 + h a2) vj+i2+2 

-2 (1 +i2 + h-a2) v7i +2 (12 + ) a2) v+i2+l 

+ (i + i2 + h-a2) vjl+i2 
- (12 + -a2) v7j+i2 

= I+ i2 + ha2) (U]+ +i-2n- 20 + v n+-i- j+l+i2 J+12 +12l 

-i2 + h a2 +i2+2 J+12+1 + VJ+121 

<?max{(vj+i2+1-j+i2 vj+i2), (vn+i2+2-2v +v+2 )}i 
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Again, (ii) is proved by induction on the initial vector {v?}jEZ. 0 

Theorem 5.2, by Theorem 1.1, gives a convergence result when the HJ- 
schemes converge, in particular, using (5.3), when h = o(k). 

We consider now the particular case when hM < 1. 

Proposition 5.3. Let hM < 1, (5.9) be true and A [-M, M] . Then the CL- 
scheme derivedfrom the HJ-scheme (5.7) is a TVB, conservative and consistent 
three-point scheme; it is also consistent with the entropy inequality. Furthermore, 
if the CFL-number 1: kh is small, the scheme is monotone. 

Proof. Since hM < 1 the CL-scheme is given by 

v7 =mintuv'; v7}, 

where 
= mnmi { (i - va).vj71 + av7 + kf* (a)} 

and 

mi {(1 + a) vjl - avj7+i + kf*(a)}. 

If v =-,jn then, by using (1.1), we have 

vn := vn-I + min -kaun-1 + kf*(a). 
' aE[ 0,MM] J-1 1 

So, 
n vn-I 

(5.17) k = min -au l + f* (a) k aE[O, M {J-1 

In the same way, if = vj, we have 

n-I 

(5.18) ' = min -aun- + f*(a)J. 
k aE[-M,01 

Since 

Ujn= n_ +Vn+[ V/ Vn+-I Vn-I un-u 1+ V7+1-V7 _ V/+1 -V/ 
h ~~h 

Vn7 Vn-I7 Vn -vnI 
= n I+ ________ J I 

i ~ h h 
from (5.17) and (5.18) we have the conservation form (3.1) if we define the 
numerical flux function to be 

=max max [au7-f*(a)], max a[ 7+ f*(a)] fX+= ax{aE[0, MJ aE[-M, 0]J 

The consistency of the scheme, i.e., f(u) = 7(u, ..., u) for any u E R, can 
be obtained simply using the definition of the Legendre transform. Moreover, 
the scheme is TVB from Remark 4.3 and the consistency with the entropy 
condition follows directly by (1.3). Finally, using the above definitions, we can 
easily prove that the function 

H(u7+1, u7, u_1) u= -A[ j 7-_j] 
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is monotone nondecreasing with respect to all its arguments, if A is small 
enough. o 
Remark 5.2: Conservation form and CFL condition for the HJ-schemes. Two 
different situations must be considered. The first is when h is constant. Then 
the scheme is in conservation form and consistent but, in general, not monotone. 
Its convergence is guaranteed by Remark 4.3. 

When h is not constant, the CL-scheme obtained from the scheme (5.7) is 
not in conservation form, according to the classical Lax-Wendroff definition. In 
fact, the number of points involved in the scheme varies according to the ratio 
h. However, it is interesting to notice that the CFL condition is not violated 
by the scheme, since the domain of dependence of the finite difference method 
includes the domain of dependence of the differential operator. More precisely, 
if (5.9) holds, then for a fixed time step k the domain of dependence at the grid 
point xj is given by the interval [xj - kM, xj + kM] for any h . Now, by using 
(5.3), it is possible to increase the number of space grid points, without loss of 
stability. A numerical discussion of this point will be made in the following 
section (see, in particular, Tables 9 and 10). 

Remark 5.3: Monotonicity for general HJ-schemes. In general, the monotonic- 
ity property will not hold for HJ-schemes. Consider the scheme (5.14), (5.15), 
so that the corresponding scheme for (CL) can be written as 

n1+1 n- 
n+1 -j+l J -(fin+1l) 

- h = imrin vJ+lI,r - ?min v.. 

Assume that the the first minimum is obtained for i = il and the second for 
i = i2; by (5.15) we get the following explicit scheme: 

(5.19) u+ - - Vi2 + min {-(i + a) 1+i, + fif*(a)} 

in { 12 + ha) Ua + 2 + kf*}(a) 

If il < i2, we will have 

vn Vn i2-il -2 
(5.20) v+l+i J+i2 E2u12 

h = - J++il+j1 
s=O 

Since all the terms u7n1+11+ , s = 1, ...i, + i2 - 1, appear only in that sum, 
the scheme is not monotone with respect to these arguments. 

Remark 5.4: Discretization of the Lax-Oleinik-Hopf representation formula. It 
is known ([19, 23, 14, 21]) that, when f is convex and x E Rn, the solution 
of (HJ) can be written as 

(5.21) v(x, t) = inf {vo(z) + tf* (Xt )} 

As we have already noticed, 

z := jh - ka E Iji if and only if a E Ai. 
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We also have 

z = 1+ i + h-a) (j + i)h - (i + h a) (j + i + I)h. 

Moreover, we can always extend Vn by linear interpolation on any interval 
[jh, (j+ 1)h), j E Z, i.e., 

vn()=( h a) VJ+i-i + h~ a) vj+i+l 
Then, substituting in (5.15), we have 

vQ+ = min{v n (z)+kf*(a) } J,i aEA5 

Recalling that UiEp Ai = [-M, M] and that, under appropriate assumptions, 
the minimum for a E R is achieved in a bounded interval [-M, M], we can 
interprete the scheme (5.14), (5.15) as a discrete version of (5.21). 

Remark 5.5: Local truncation error for the scheme related to the viscosity solu- 
tion. Even if it seems difficult to derive a local truncation error for the general 
HJ-scheme for (CL), owing to its rather involved formulation (see Remark 5.3), 
we can derive it for the viscosity solution. 

Let v be a sufficiently smooth solution of (HJ) and f be smooth. We set 
x = jh, t = nk, and we define the local truncation error for the scheme (5.7) 
(remember that in Proposition 5.1 we have already shown that the infimum is 
achieved on a compact set A) by 

Lk(x, t) = k [v(x, t) - min{v(x - ka, t - k) + kf*(a)}]. 

Denoting the difference in the square brackets by Dk(x, t) and developing by 
Taylor expansion, we get 

Dk(X, t) = v(x, t) - mEin {v(x t - k) + vx(x , t - k)(-ka) 
aEA 

+ vxx(x, t - k)(ka)2+ + kf*(a)} 

=v(x, t)-v(x, t-k) 

+kmax{v (x, t - k)a - vxx(x, t - k) ka.2 + + f*(a)} 
aEA 

= Vt(x , t)k + 2Vtt(x , t) k2 + 0(k) + kf(vx(x o t - k)) 

= Vt(X, t)k + -Vtt(X, t) k2 + 0(k2) 

+ k[f (vx(x > t)) +' f'(vx(x, t)) (vx(x, t - k) - vx(.x, t)) + 1 

Since v is a solution of (HJ), we can conclude that 

Lk(x, t) = k [-Vtt(x, t)k2 + 0(k 2) + f'(vx(x, t))vxt(x, t)k2 + 0* ] - 0(k). 

6. TESTS, EXAMPLES AND NUMERICAL EFFICIENCY 

The numerical results in this section deal with the solution of the Burgers 
equation Ut + (I U2)x - 0. In this example, (5.7) is 
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(6.1) vjn= min m v 1(jh-ka)+!a2I' (6.1) 
~~~aE[-M, M] 

where M is the Lipschitz constant of the initial data for the corresponding 
problem (HJ). 

As one can observe, the number of space nodes necessary to compute v7 at 
each time step depends strictly on h and k. If, for example, 

(6.2) k jai < 1 Va E [-M, M], 

the scheme is a three-point scheme and 

(6.3) v7 =min{gj; v}jn 
where 

(6.4) min {IQ- ia) v; + Wiav7?, ~ a} 
(6.4) j ~aE[0, M] { h 2 } 

and 

(6.5) vj' mmin {(1+i -a) vjnl - !avr7 + -a2l 
aE[-M,OiIkh 1 . h j+ 2J 

A simple case study leads to the following explicit formulas: 

vn-I -<if v'1 < vn-, 

n_|Vn- I h2[2(Vjn-1)2 + 2(V, -1 )2 _Vn_ I Vn- I] v J -j-1 < - 
Un J - +(v7r1)2 vhlv 2-J] 

if vn-1 < Vr-h1 < vn-1 + Mh 

n-1 kM[n n-1l] kM2ifn, 

V.- -hM[v. ~t-v.+ll1+k22 +if 
v"'fv 

+ 

Mh<vhl vi ~~~~~~~~~~~~~~~~j+1' 
n-i [ln.1\2 -.(vn71)2 v- - 

n 
1~h22J 2 

+ +11 

n-I k= [ l -v n-I + kM- if vn71<v7 ?,71+ Mh,<0- 

h 2 fv41 Mhv . 
In contrast, if we choose h = k3/2 to respect (5.3) and get the estimate 

IIw - W,IIL < Ck1/2 

the number of points increases, the accuracy of the method increases too, and 
for the computation of the minimum we repeat the same arguments as before 
with more cases to be considered. For a general convex flux f, one should use 
(5.7) and an approximation of f* (e.g., by the algorithm described in [3, 6]). 

For the numerical experiments, we have chosen for (CL) three initial data uo 
such that the corresponding vo has Lipschitz constant M = 1. In all figures 
the exact solution is represented by a continuous line, whereas the approxi- 
mate solution is represented by small circles. All the tests have run on a VAX 
6500/510, and the CPU time reported in the tables (see Supplement) is in the 
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form min:sec.dec. or sec.dec. As we have already remarked, one can use any 
discretization of v,; the numerical results in all the tables refer to a centered 
difference scheme. In all the tests we have set the viscosity coefficient for the 
Harten scheme equal to 0.25. 
Test 1. The initial data is 

(IJ for X E[-I,l1], 
U0(X) 0 elsewhere, 

and we have looked for the solution at time T = 2. Using characteristics, one 
can easily prove that the exact solution has a shock at that time. 

o numerical sol. 
- exact sol. 0 numerical sol. 

- exact Sol. 

-2 -3 0 2 S -3 -2 -2 0 2 X 

GODUNOV SCHEME HARTEN SCHEME 

(a) (b) 

o numericl sol. o numerical sol. 
-exact sol. - exact sol. 

n 7~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 

-3 -2 -, 0 2 3- . -' -00 0 0.0 . 2 2.0 

x aox;s X ox.s 

(c) (d) 

FIGURE 1. Test 1: exact versus approximate solutions at time 
T 2 

(a) Godunov: space nodes = 270, time nodes = 405 

(b) Harten: space nodes = 270, time nodes = 405 

(c) H-J scheme k < h: space nodes = 270, time nodes = 405 

(d) H-J scheme h = k32 space nodes = 233, time nodes = 30 
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Figures 1 c,d show the numerical results for the three-point scheme, and for 
the general scheme where h = k312. They are compared with the results ob- 
tained by applying the Godunov scheme and the Harten scheme [13] to the 
same problem (Figures la,b). The same number of nodes in space and time has 
been used for the three-point HJ-scheme, Godunov and Harten methods, since 
for these methods a condition of type (6.2) is needed. It is rather interesting to 
compare the results; in particular, notice that lc is almost equal to la and that 
the general HJ-scheme converges even better where the solution has a jump with 
roughly the same number of nodes in space and less steps in time (30 instead 
405). In Figure ld one can see a strange oscillation around the exact solution 
but the corners of the entropy solution are picked up very well, and the diffusion 
around the shock is almost negligible (1 node). 

Table 1 contains the errors (in the L'-norm) of our methods for different 
mesh sizes and time steps. This table confirms that, in this test, the general 
HJ-scheme is more accurate and requires less CPU time. 

In Table 2 we compare the orders of convergence in Ll for all the above 
schemes. Notice that the general HJ scheme has a higher order of convergence 
(0.9 instead of 0.8) and it is not very far from the order of convergence of 
Harten's scheme. 

We have computed the approximate order of convergence y in terms of the 
space step h. Assuming for the error in the L'-norm the estimate 

Err(h)= =(hy) 

we have computed the error for h, and h2 to obtain 

Err(h1) _ h, 
Err(h2) kh2J 

Typically for the methods satisfying (6.2), we have chosen h2 = h1/2. The 
order for the HJ-schemes where h = k has been computed always in terms of 
the space step h, choosing k2 = k1 /4, so that h2 = h I/8. 

Test 2. The initial data is 

f 1-x for x E [0,1], 
u l. 0 elsewhere, 

and we have computed the solution up to time T = 0.7. 
Again, we compare our methods with Godunov and Harten schemes in Figure 

2. The general HJ-scheme behaves very well also in this test (see 2d), staying 
close to the sharp cusp, while the other methods smooth it out. Notice that the 
result of Figure 2d has been obtained using only 20 nodes in time. 

For this example we have computed the errors in L1 and L?; they are 
shown in Table 3. The difference between the errors in L? of Tables 3a and 
3b is very large but also the difference in terms of the LI error is substantial if 
we compare the errors which correspond to similar CPU times. 

Finally, Table 4 shows the order of convergence in LI and LOO . In this test 
the general HJ-scheme has the best order of convergence (even better than the 
order of Harten's scheme). 
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o numenical sol. o numerical sol. 
- exact sol. - exact so5. 

0.6 0.6 

024 0.40 

-0.5 -0.25 0 025 0.5 0.75 1.25 .5 -.5 -0 0 0 0 .5 015 2S 7. 5 

x oxis x axis 

(a) (b) 

o numeical sol. o numerical sol. 
- exawt sol. -exac Sol. 

0.4 0.4 

0S2 0.2 

0 -0 . 02 a 02 - 7 12 5 -0.5 -0.25 0 0 .25 5 0.275 I 25 1.5 -. 02 0 5 05 I 72 

xaxis x axis 

(c) (d) 

FIGURE 2. Test 2: exact versus approximate solutions at time 
T =0.7 

(a) Godunov : space nodes = 270, time nodes ' 
405 

(b) Harten : space nodes = 270, time nodes= 405 

(c) H-J scheme k < h: space nodes = 270, time nodes= 405 

(d) H-J scheme h k32 space nodes = 306, time nodes = 20 

Test 3. This test shows the behavior of HJ-schemes when the solution is smooth. 
The initial data is uo(x) =- 0.5 + sin(7rx) with periodic boundary conditions, 
and the solution is computed up to time T = 0.2. 

We have taken advantage of the periodic boundary conditions in the imple- 
mentation of Godunov and Harten schemes. Notice that this cannot be done 
for the HJ-schemes since the corresponding initial condition for ('HJ) is not 
periodic. 
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o numerical sol. o numerical sol. 

- exact sol. - exact sol. 

25 .25 

a. 05 

-0.25 -0.25 

-0.5 ~ ~ ***p 0 ~ 
0 0.25 0.5 0.75 t 1.25 .5 .7S 2 0 0 25 05 0.5 t t.25 1.5 .75 2 

x axis x ox;s 

(a) (b) 
o numerical sol. O numerikasol. 

-exc soL exact Sol. 

005 '.5 

0.05 0. 05 

0.75 0.05 05 05~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0.05 0025 

0 0 

-0.05 -0.25 

0 0.25 05S 0.75 0 7.0s 15 1. 075 2 0 0025 0.5 0.75 1 7.25 7 1 7I.7 2 
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FIGURE 3. Test 3: exact versus approximate solutions at time 
T= 0.2 

(a) Godunov: space nodes = 60, time nodes = 90 

(b) Harten: space nodes = 60, time nodes = 90 

(c) H-J scheme k < h: space nodes = 60, time nodes = 90 

(d) H-J scheme h = k3-2 space nodes = 64, time nodes = 2 

In Figure 3 we show the drawings corresponding to the above methods. The 
approximate solution corresponding to the general HJ-scheme stays close to the 
solution also near the local maximum and minimum points (where the solutions 
obtained by the other methods differ from the exact solution). Notice that the 
result of Figure 3d has been obtained using only 2 nodes in time (i.e., k = 0. 1). 

Table 5 contains the errors in LI and L?? and the CPU times corresponding 
to a number of different time steps and mesh sizes. In 02.28 seconds the general 
HJ-scheme produces a solution with an L?? error of 0.01 54.The Harten scheme 
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uses 3.01 seconds to obtain a similar L error and the other methods never 
reach that accuracy. In Table 6 we show the orders of convergence in L1 and 
Lw . Table 9 contains the results for a HJ-scheme where the choice of h is 
independent from k. In fact, even if the a priori estimate (5.3) suggests that 
the choice h = k3/2 is optimal, a different choice is still possible. The best result 
is obtained with only two steps in time and the smallest mesh size (h = 0.001) . 
The orders of convergence are always close to, or above, 1. 

Test 4. This test shows the behavior of HJ-schemes in smooth regions after a 
shock appears. We have considered the same initial data (with periodic bound- 
ary conditions) of Test 3 but the solution is computed up to T = 1. As one 
can easily prove, the entropy solution has a jump. In Tables 7 and 8 we com- 
pare the methods in term of the errors, CPU time and order of convergence. 
In this example we have computed also the Lw" error related to the region 
where the solution is smooth (in particular, this error refers to the set I \ Io, 
where Io = (x - 0.1 , x + 0.1) and x is the point of discontinuity). Notice that 
HJ-schemes fit well the exact solution in the regularity region. 

Tables 11 and 12 contain the results for an HJ-scheme where the choice of 
h is independent of k. Also in this test, the best result is obtained with only 
two steps in time and the smallest mesh size. The approximate solution stays 
very close to the exact solution in the region of regularity (the corresponding 
LI error is about 10-2 or less). The orders of convergence are close to 1. 

Conclusion. The numerical results show that the HJ-schemes that we propose 
are very accurate and faster than our implementation of the methods of Go- 
dunov and Harten. We observe that the general HJ-scheme stays very close to 
the solution wherever it is continuous (in particular, look at the results for Test 
2): in fact the main contribution to its LI error is given by the jump around 
the shocks (see Test 4). Even better results can be obtained for large time steps 
and small mesh sizes (see Tables 9 and 1 1). 

Finally, we observe that, for the same LI error, the CPU times of the general 
HJ-scheme are drastically lower than those of the other methods. 
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